DNTNU Kunnskap for en bedre verden

TTM4175 – Week 35

Net 1 – IP Addresses and Binary Representation, Routing

Goals – Week 35

- Understand and apply basic **binary arithmetic**
- Understand IP addresses and subnets
- Create and configure Local Area Networks (LANs)
- Use basic Linux commands for managing
 - IP addresses (IPv4 and IPv6)
 - IP subnets and masks

Recap – Binary

- Number system that uses only binary digits 0 and 1
- Common grouping: 8 bits = 1 octet = 1 byte
 Possible values from 0 (0000 0000) to 255 (1111 1111)
- Given n bits, we can represent 2^n numbers
 - − 8 bits → 256 numbers, 32 bits → 4 294 967 296 numbers

Binary Arithmetic – AND Operator

• Defined via truth table

a	b	a AND b	Expression	Value	Bit-mask to extrac
0	0	0	x_1	1011 0111	TIPST 6 DITS OF x_1
0	1	0	x_2	1111 1100	
1	0	0	$x_1 AND x_2$	1011 0100	
1	1	1			

- Often used in programming to check multiple conditions
- Bit-wise application to a pair of same-length bit strings allows extracting sub-strings

IP Addressing

- IP address: 32-bit identifier associated with each host or router *interface*
- Interface: connection between host/router and physical link
 - Routers typically have multiple interfaces
 - Host typically has one or two interfaces (e.g., wired, wireless)

Dotted-decimal IP address notation

Binary, IP – Exercise

- 1. Convert 172.16.254.35 to binary
- 2. Construct a bit mask to extract the first 24 bits from the result
- 3. Apply the mask to the address in 1.
- 4. Convert the bit mask and the result back to dotted decimal

<u>https://www.advanced-ict.info/interactive/binary.html</u> <u>https://www.rapidtables.com/calc/math/binary-calculator.html</u> - ! note: use and(&) and not add(+) !

Check

slide 11

Subnets

What's a subnet?

 Device interfaces that can physically reach each other without passing through an intervening router

IP addresses have structure

- Subnet part: devices in a subnet have common high order bits (=first *n* bits)
- Host part: remaining low order bits (=remaining 32 n bits)
- Organization, security, manageability

Network with 3 subnets

Subnets

- IP addresses have structure
 - Subnet part: devices in a subnet have common high order bits (=first *n* bits)
 - Host part: remaining low order bits (=remaining 32 n bits)

- Subnet mask defines a subnet, determining the size and IP address range of the subnet
 - Here: IP 223.1.1.1 and mask 255.255.255.0
 - Common notation
 First 24 bits are ones
 - 223.1.1.0/24 to refer to the subnet
 - 223.1.1.1/24 to refer to the IP address

Subnets – Example

Length of subnet part

- 223.1.1.0/24
- 11011111 0000001 0000001 0000000
- Subnet part, host part
- Available addresses in subnet
 - 11011111 0000001 0000001 0000000
 - 11011111 0000001 0000001 0000001
 - ...
 - 11011111 0000001 0000001 1111110
 - 11011111 00000001 0000001 1111111

223.1.1.3

Special reserved addresses (network address, broadcast address) that **can't** be assigned to an interface

Subnets – Exercise

- Given the subnet 172.31.207.109/24,
 - 1. Determine the first / last address in the subnet
 - 2. Determine the number of addresses in the subnet
 - 3. How do the answers to 1 and 2 change in case of a /20 subnet?

10:00

Private Subnets

- Best practice to use subnets from these ranges when setting up local networks – RFC 1918 https://datatracker.ietf.org/doc/html/rfc1918
 - -10.0.0.0
 - Subnet Mask 255.0.0.0 (/8)
 - 172.16.0.0
 - Subnet Mask 255.240.0.0 (/12)
 - 192.168.0.0
 - Subnet Mask 255.255.0.0 (/16)

Remember: The first and last address of a subnet are reserved!

Longer masks commonly used, e.g., 192.168.1.0/24

Lab Program Today

- Create your own local network in GNS3
- Learn how to use the CLI to
 - Get interface information
 - Set IP addresses
 - Check connectivity using ping
- Explore subnet masks

Next Week: Networking Lab II

- Topics: ports, layers, client-server arch., web servers
- Goals
 - Recognize the importance of ports in networking
 - Understand how computer networking is organized into protocol layers
 - Get familiar with the popular client-server architecture for network-based services and see it applied with a web server
- Preparation material & BB announcement on Monday
- ! Remember the reflections after the lab