DNTNU Kunnskap for en bedre verden

TTM4175 - Week 37

Networking III Routing and DNS

Goals

Recognize the role of routing in networking Use ip route for managing routes

Retrieve basic DNS information

Deploy simple network services

Recap of Preparation Material

Readings

Routing and DNS

Web servers

Videos

Routing and DNS

Docker compose (optional)

DNS: Domain Name System

People: many identifiers

• SSN, name, passport #

Internet hosts, routers:

- IP address (32 bit) used for addressing datagrams
- "name", e.g., cs.umass.edu used by humans
- <u>*Q*</u>: how to map between IP address and name, and vice versa ?

Domain Name System (DNS)

- Distributed database implemented in hierarchy of many name servers
- Application-layer protocol: hosts, DNS servers communicate to resolve names (address/name translation)
 - Core Internet function, implemented as applicationlayer protocol
 - Complexity at network's edge

Slide adapted from "Computer Networking: A Top Down Approach 8e". © Copyright 1996-2021 J.F Kurose and K.W. Ross, All Rights Reserved

DNS – Services, Structure

DNS services

- Hostname-to-IP-address translation
- Host aliasing
 - Canonical, alias names
- Mail server aliasing
- Load distribution
 - Replicated Web servers: many IP addresses correspond to one name

Q: Why not centralize DNS?

- Single point of failure
- Traffic volume
- Distant centralized database
- Maintenance

A: Doesn't scale!

- Comcast DNS servers alone: 600B DNS queries/day
- Akamai DNS servers alone:
 2.2T DNS queries/day

Thinking About the DNS

- Humongous distributed database
- ~ billion records, each simple
- Handles many *trillions* of queries/day
- Many more reads than writes
- Performance matters: almost every Internet transaction interacts with DNS - msecs count!
- Organizationally, physically decentralized
 - millions of different organizations responsible for their records
- "Bulletproof": reliability, security

Kunnskap for en bedre verden

Slide adapted from "*Computer Networking: A Top Down Approach 8e*". © Copyright 1996-2021 J.F Kurose and K.W. Ross, All Rights Reserved

DNS - A Distributed, Hierarchical Database

Client wants IP address for www.amazon.com; 1st approximation

- Client queries root server to find .com DNS server
- Client queries .com DNS server to get amazon.com DNS server
- Client queries amazon.com DNS server to get IP address for www.amazon.com

DNS – Root Name Servers

DNS – Root Name Servers

- Official, contact-of-last-resort by name servers that can not resolve name
- Incredibly important Internet function
 - Internet couldn't function without it!
 - DNSSEC provides security (authentication, message integrity)
- ICANN (Internet Corporation for Assigned Names and Numbers) manages root DNS domain

13 logical root name "servers" worldwide each "server" replicated many times (~200 servers in US)

Top-Level Domain and Authoritative Servers

Top-Level Domain (TLD) servers:

- Responsible for .com, .org, .net, .edu, .aero, .jobs, .museums, and all top-level country domains, e.g.: .cn, .uk, .fr, .ca, .jp
- Network Solutions: authoritative registry for .com, .net TLD
- Educause: .edu TLD

Authoritative DNS servers:

- Organization's own DNS server(s), providing authoritative hostname to IP mappings for organization's named hosts
- Can be maintained by organization or service provider

Local DNS Name Servers

- When host makes DNS query, it is sent to its *local* DNS server
 - Local DNS server returns reply, answering
 - From its local cache of recent name-to-address translation pairs (possibly out of date!)
 - Forwarding request into DNS hierarchy for resolution
 - Each ISP has local DNS name server; to find yours
 - MacOS: scutil --dns
 - Windows: ipconfig /all
- Local DNS server doesn't strictly belong to hierarchy

DNS Name Resolution – Iterated Query

DNS Name Resolution – Recursive Query

Caching DNS Information

- Once (any) name server learns mapping, it caches mapping, and immediately returns a cached mapping in response to a query
 - Caching improves response time
 - Cache entries timeout (disappear) after some time (TTL)
 - TLD servers typically cached in local name servers
- Cached entries may be out-of-date
 - If named host changes IP address, may not be known Internet-wide until all TTLs expire!
 - Best-effort name-to-address translation!

IP and DNS – Useful Tools

- Checking your own IP address
 - Private: ifconfig / ip / ipconfig
 - Public: <u>https://www.showmyip.com/</u>
- Resolving IP address of a remote target
 - Operating system tools: nslookup / dig / host
 - Online tools: <u>https://www.nslookup.io/</u>

IP and DNS – Exercise

Find your private IP address and compare with your team members. Do you notice a pattern?

Find your public IP address and do the same

When using your local DNS tools, which name server is used? Who owns it?

Try different DNS servers at nslookup.io – do you notice something when comparing the results for large services like netflix.com?

22

Network-Layer Services and Protocols

- Transport segment from sending to receiving host
 - Sender: encapsulates segments into datagrams, passes to link layer
 - Receiver: delivers segments to transport layer protocol
- Network layer protocols in *every Internet device*: hosts, routers
- Routers
 - Examine header fields in all IP datagrams passing through it
 - Move datagrams from input ports to output ports to transfer datagrams along end-end path

Slide adapted from "*Computer Networking: A Top Down Approach 8e*". © Copyright 1996-2021 J.F Kurose and K.W. Ross, All Rights Reserved

Two Key Network-Layer Functions

Network-layer functions

- Forwarding: move packets from a router's input link to appropriate router output link
- Routing: determine route taken by packets from source to destination
 - Routing algorithms

Analogy: taking a trip

- Forwarding: process of getting through single interchange
- Routing: process of planning trip from source to destination

Slide adapted from "Computer Networking: A Top Down Approach 8e". © Copyright 1996-2021 J.F Kurose and K.W. Ross, All Rights Reserved

Network Layer – Data and Control Plane

Data plane

- Local, per-router function
- Determines how datagram arriving on router input port is forwarded to router output port

Control plane

- Network-wide logic
- Determines how datagram is routed among routers along end-end path from source host to destination host

Per-Router Control Plane

Individual routing algorithm components *in each router* interact in the control plane

Slide adapted from "Computer Networking: A Top Down Approach 8e". © Copyright 1996-2021 J.F Kurose and K.W. Ross, All Rights Reserved

Destination-Based Forwarding

forwarding table					
Destination Address Range	Link Interface				
11001000 00010111 000 <mark>10000 00000000000</mark>	n				
11001000 00010111 000 <mark>10000 00000</mark> 100	_				
through	3				
11001000 00010111 000 <mark>10000 00000111</mark>					
11001000 00010111 000 <mark>11000 11111111</mark>					
11001000 00010111 000 <mark>11001 00000000</mark>					
through	2				
11001000 00010111 000 <mark>11111 11111111</mark>					
otherwise	3				

Q: but what happens if ranges don't divide up so nicely?

which interface?

Longest Prefix Matching

00010111

Longest prefix match When looking for forwarding table entry for given destination address, use *longest* address prefix that matches destination address.

Destination	Link interface			
11001000	00010111	00010***	******	0
11001000	00010111	00011000	* * * * * * * *	1
11001000	00010111	00011***	* * * * * * * *	2
otherwise				3

examples:

11001000

11001000 00010111 00011000 10101010 which interface?

00010110

10100001

Longest Prefix Matching

Longest prefix match When looking for forwarding table entry for given destination address, use *longest* address prefix that matches destination address.

Longest Prefix Matching

exa

 Longest prefix match
 When looking for forwarding table entry for given destination address, use *longest* address prefix that matches destination address.

Destination	Address Rang	je		Link interface
11001000	00010111	00010***	* * * * * * * *	0
11001000	00010111	00011000	*****	1
11001000	00010111	00011***	* * * * * * * *	2
otherwise				3
11001000	match!	00010110	10100001	which interface?
11001000	00010111	00011000	10101010	which interface?
	Destination / 11001000 11001000 11001000 otherwise 11001000 11001000	Destination Address Range 11001000 00010111 11001000 00010111 11001000 00010111 otherwise Imatch! 11001000 00010111 11001000 00010111	Destination Address Range 11001000 00010111 00010*** 11001000 00010111 00011000 11001000 00010111 00011*** otherwise Imatch! 00010110 11001000 00010111 00010110	Destination Address Range 11001000 00010111 00010*** ******* 11001000 00010111 00011000 ******** 11001000 00010111 00011 ******** 0therwise Imatch! 00010110 10100001 11001000 00010111 0001100 10100001 11001000 00010111 00011000 10100001

Longest Prefix Matching

- Longest prefix match When looking for forwarding table entry for given destination address, use *longest* address prefix that matches destination address.

IP PREFIXES, SUBNET MASKS, HEADERS

IP Prefixes

- Example: 10.240.1.0/24
 - Network address with prefix length 24
 - First 24 bits specify network address
 - 00001010.11110000.0000001.00000000
 - Allows routers to determine interface towards next hop on the way to a packet's destination in an aggregated way
 - Longest prefix match: compare destination IP of packet against all entries, return the one with the longest match
 - No need to create forwarding table entries for each IP address

Prefix

Subnet Masks

- 32-bit number used to extract network part from IP address
- Applying mask to any address from 10.240.1.0/24 yields network

 - 10.240.1.0 00001010.11110000.00000001.00000000
- Used by hosts to determine reachability of destinations
 - Same subnet \rightarrow reachable locally \rightarrow send directly via layer 2
 - Other subnet \rightarrow send to gateway (typically a router)

IP Prefixes, Subnet Masks, Headers

- Prefix: substring of specific length
 - Example: 00001010 11110000 00000001
 - Used by routers to perform longest prefix matching

Datagram
IP header
src IP: 10.0.0.1
dst IP: 10.240.1.23 =
00001010.11110000.00000001.00010111
Ethernet header
src / dst MAC address

Router with forwarding table entries

00001010 11110000 0000001 ******* -> eth0 00001010 11110000 101000** ******* -> eth1

- Subnet mask: bit mask to extract network part

 - Used by hosts to decide whether packets' destinations are reachable locally or require gateway involvement

Router Configuration – Examples

Router Configuration – Examples

Kunnskap for en bedre verden

Router Configuration – Exercise

• R1

Prefix	Next-hop IP	Int.
223.1.1.0/24	-	1
10.2.0.0/30	-	2
223.1.2.0/24	10.2.0.2	2
10.3.0.0/30	10.2.0.2	2

Configure R2

 and R3 to allow
 host-host
 connectivity

Lab Program Today

- Navigate complex networks
- Determine packet paths
- Adjust routing
- Modify DNS behavior
- Consolidate networking knowledge

